

1. Technical IAQP Explainer for Engineers (ASHRAE 62.1 – Indoor Air Quality Procedure)

Purpose of IAQP

ASHRAE Standard 62.1 provides two compliant ventilation pathways:

1. **Ventilation Rate Procedure (VRP)** – prescriptive outside air volumes
2. **Indoor Air Quality Procedure (IAQP)** – performance-based contaminant control

The **IAQP** allows engineers to meet indoor air quality requirements by **limiting contaminant concentrations**, rather than by supplying fixed quantities of outdoor air.

This enables **safe reduction of outdoor air**, provided that:

- Contaminants of concern are identified
- Acceptable concentration limits are defined
- Control strategies are documented and verifiable

Why IAQP Matters in HVAC Design

In hot-climate regions, outdoor air dominates:

- Cooling load
- HVAC system sizing
- Energy consumption

IAQP enables engineers to **decouple IAQ performance from outside air volume**, unlocking opportunities to:

- Reduce ventilation rates
- Downsize HVAC equipment
- Lower peak and annual energy demand

IAQP Compliance Framework (Engineer View)

Under ASHRAE 62.1 IAQP, the design team must demonstrate that:

1. **Contaminants of Concern** are identified

Typical examples:

- Particulates (PM2.5, PM10)
- VOCs
- Microbial contaminants (bacteria, viruses, mould)
- Odours

2. **Acceptable Concentration Limits** are defined

Using:

- ASHRAE guidance
- WHO / EPA references
- Owner Project Requirements (OPR)

3. **Control Measures** are implemented

Including:

- Filtration
- Air cleaning / purification
- Source control
- Ventilation (reduced but sufficient)

4. **Performance is Achieved and Maintained**

Through:

- Independently tested technologies
- Monitoring (optional but recommended)
- Documented design intent

Role of Bipolar Ionization in IAQP

When **Direct Barrier Discharge (DBD) Bipolar Ionization** is integrated into the HVAC system:

- Pathogens, VOCs, and fine particulates are **neutralized in the air and on surfaces**
- Contaminant concentrations are **actively reduced**, not just diluted
- IAQ targets can be met with **significantly less outside air**

This allows engineers to justify **ventilation reductions often in the order of ~40–50%**, subject to project-specific modelling and approval.

HVAC Downsizing Opportunities Enabled by IAQP

Reducing outside air directly impacts system sizing:

System Element Impact

FAHUs	Lower airflow rates
Cooling coils	Reduced sensible & latent loads
Chillers	Smaller capacity
Ductwork	Reduced cross-sectional area
Plant rooms	Smaller footprint
Electrical	Reduced fan & chiller power

The result is **lower HVAC CapEx** and **lower OpEx**, while remaining compliant with ASHRAE 62.1.

Energy & Sustainability Implications

Typical outcomes in IAQP + air purification designs:

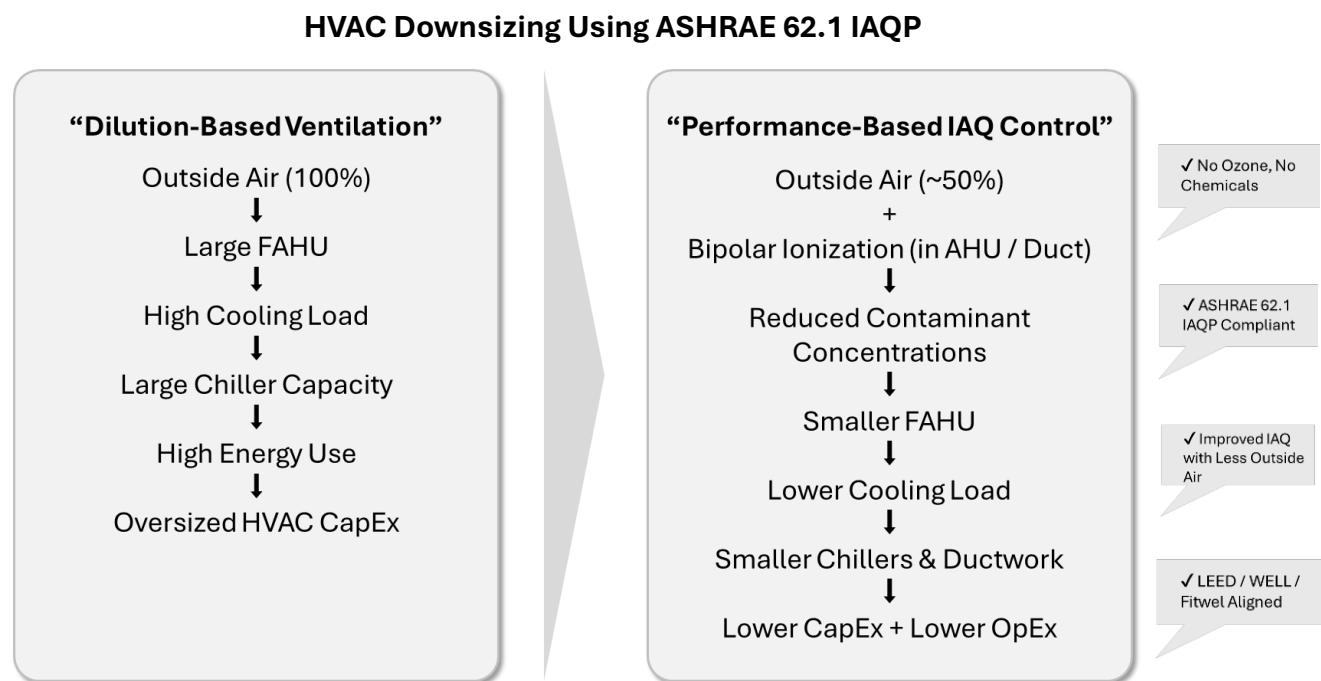
- ~10–15% reduction in total building energy
- Reduced peak cooling demand
- Lower carbon emissions
- Improved LEED, WELL, and Fitwel alignment

Importantly, **IAQP is explicitly recognised** within these certification frameworks as a valid compliance pathway.

Key Engineering Considerations

- IAQP must be documented clearly in Basis of Design (BoD)
- Air cleaning technology must be **independently tested and ozone-free**
- Coordination with sustainability consultants is recommended
- Early-stage integration (concept / schematic) maximises savings

Summary for Engineers


IAQP is not a workaround.

It is a **standards-compliant, performance-based design method** that:

- Improves IAQ
- Reduces HVAC size
- Cuts energy use
- Strengthens the business case for healthy buildings

When paired with proven air purification, IAQP becomes a **powerful engineering optimisation tool**.

2. HVAC Downsizing via IAQP

FOOTNOTE (Engineering Note)

Actual ventilation reductions and equipment downsizing are project-specific and must be validated through IAQP analysis and design documentation.